
Люминесцентные спектрометры LS 45 и LS 55

Накопленный десятилетиями опыт работы компании **PerkinElmer** в области люминесцентной спектрометрии и использование оригинальных технических решений, таких как конструкция с пульсирующей ксеноновой лампой, позволяют быть уверенным в том, что независимо от области Ваших интересов спектрометры **LS 45** и **LS 55** обеспечат высокое качество получаемых результатов. Люминесцентные спектрометры **LS 45** и **LS 55** - чрезвычайно гибкие приборы, которые могут работать в любом из четырёх режимов - флуоресценции, фосфоресценции, хеми- или биолюминесценции.

Эти универсальные приборы с успехом удовлетворяют самые взыскательные запросы специалистов, занятых в абсолютно разных областях – от рутинного контроля качества материалов до сложных биохимических исследований. Используя большое количество взаимозаменяемых аксессуаров, перечисленных ниже, пользователь может легко переконфигурировать приборы под решение различных задач, оставаясь при этом абсолютно уверенным в надёжности получаемых результатов.

Интуитивно понятное программное обеспечение **FL WinLab**, работающее в среде Windows 2000 и XP, и отличные технические характеристики делают спектрометры **LS 45** и **LS 55** незаменимыми для получения надёжных результатов в различных областях химии, биологии, экологии .

Приставки, которыми могут оснащаться приборы, дают возможность работать с образцами, находящимися в различном агрегатном состоянии.

Основные приставки для LS 45 и LS 55:

- ♦ Устройство быстрой смены фильтров.
- Приставка для считывания плашек.
- Приставка для измерения полного излучения образца.
- Приставка для низкотемпературных измерений.
- ♦ Биокинетическая приставка.
- Приставка для изучения хеми- и биолюминесценции
- Приставка для изучения твёрдых образцов.
- 4-позиционный термостатируемый держатель кювет с перемешиванием.
- ◆ Автодозатор на 40 позиций.
- ◆ Автосамплер AS-93+
- Проточная кювета для ВЭЖХ.
- ♦ Поляризаторы.
- Волоконно-оптическая приставка.

Области применений люминесцентных спектрометров LS 45 и LS 55

- **◆ Клеточная биология**: цитотоксичность, жизнеспособность, пролиферация, злокачественное перерождение, подсчет и адгезия клеток, репликация генов, экспрессия генов и т.д.
- Клинические анализы: энзимология, анализ порфиринов, стероидов, анализ крови
- Охрана окружающей среды: определение пестицидов, ПАУ, диоксинов и т.д. в различных природных объектах (растениях, почве, осадках, воде), определение нефтепродуктов, определение хлорофилла
- ◆ Фармацевтика: определение витаминов, биологически активных соединений, наркопрепаратов, продуктов метаболизма, токсичности фармпрепаратов
- ◆ **Неорганический анализ**: определение Al, Pb, Zn, Mg, Mn, Se, Sn, U и др.
- ◆ Молекулярная биология: определение ДНК, структуры и функции мембран, экспрессии генов, активности ферментов, превращения белков, определение продуктов ПЦР
- ◆ **Промышленность**: анализ конструкционных материалов, анализ стабилизаторов и добавок в полимерах, анализ деталей LCD и TFT дисплеев и т.д.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Модель	LS 45	LS 55
Принцип	однолучевой люминесцентный спектрометр, работающий в режимах флуоресценции, фосфоресценции, хеми- или биолюминесценции	
Источник	150 Вт ксеноновая лампа, работающая в пульсирующем режиме с частотой 50 Гц	
Монохроматоры	типа Монка-Джиллисона	
Область длин волн	Возбуждение: 200 – 800 нм Эмиссия: 200 – 900 нм	
Спектральная ширина щели	Возбуждение: 10 нм Эмиссия: 10 нм	Возбуждение: 2,5 – 15 нм Эмиссия: 2,5 – 20 нм Инкремент: 0,1 нм
Точность установки длины волны	±1,0 нм	
Воспроизводимость установки длины волны	±0,5 нм	
Отношение Сигнал/Шум	лучше, чем 750:1 (RMS) для полосы комбинационного рассеяния воды при длине волны возбуждающего излучения 350 нм, ширине щели 10 нм, или 2500:1 (RMS) при измерении шумов базовой линии	
Скорость сканирования	10 – 1500 нм/мин	
Стандартный держатель кювет	однопозиционный, термостатируемый	
Эмиссионные фильтры	290, 350, 390, 430, 515 нм.	
Система управления и обработки данных	Управление прибором осуществляется с персонального компьютера, работающего в среде Windows под управлением ПО FL WinLab. Интенсивность люминесценции, длины волн возбуждения и эмиссии можно наблюдать в реальном масштабе времени и записывать на диск. Возможна математическая обработка данных, включающая сглаживание, дифференцирование, интегрирование и нормализацию спектров. Задание волновой программы позволяет запоминать до 15 пар длин волн возбуждения и эмиссии. Специальные процедуры позволяют измерять затухание фосфоресценции и поляризацию спектра. Имеется специальная биохимическая программа.	
Размеры, вес	265 х 790 х 680 мм; 49,5 кг	
Питание	220 В, 50 Гц, 1 А	